

LIVERCELLPATH: A RESOURCE TO HELP EVALUATE HUMAN LIVER CELL LINES AS MODELS FOR HUMAN LIVER BIOLOGY

ABSTRACT

Primary hepatocytes are difficult to obtain and dedifferentiate quickly in cell culture making them challenging to use to model chronic liver disease. Human hepatocellular carcinoma (HCC) lines can be easily propagated but are often aneuploid and important genes or biological pathways of interest may not be expressed. We used RNAseq to measure gene expression and to determine exome genotypes from five different HCC lines and compared these to normal human primary hepatocytes. We also determined exonic variation in these cell lines. We created a new software application, **CorrPaths**, that reports gene expression and exonic variation across these cell lines to facilitate identifying cell lines suitable for modeling particular aspects of liver biology and diseases.

RESULTS

Examination of the Reactome XENOBIOTICS pathway (R-HSA-211981) shows that many of the P450 cytochromes expressed by primary hepatocytes (CYP2E1, CYP2C8, CYP2C9, CYP3A4, CYP2A6) are nearly completely absent in all cell lines. Analysis of the GLYCOGEN_SYNTHESIS pathway (R-HSA-3322077) shows that unlike primary hepatocytes and liver tissue, all cell lines express the muscle form of glycogen synthase (GYS1) rather than the liver form of glycogen synthase (GYS2). This result was confirmed by Western blotting of GYS1 and GYS2 in HuH-7 cells compared with liver tissue extracts. Genotyping HuH-7 and HepG2 shows that both HuH-7 and HepG2 cell lines are homozygous for the PNPLA3 SNP (rs738409; I148M) known to increase NAFLD making them good models for this disease. The liver specific output from **CorrPaths**, **LiverCellPath**, can be used online or offline. Its produces an Excel file that can be easily shared with other users, exported to HTML, and can be encrypted for use with sensitive data.

METHODS AND MATERIALS

RNAseq was performed on HepG2, HepG2-C3A, HuH-7, SNU-475 and THLE-1 cell lines and compared with RNAseq from six primary hepatocyte datasets from GEO. Gene expression levels for HCC lines were determined using TopHat and DESeq2 and compared to primary hepatocytes with **CorrPaths**. Exome sequences from HCC lines were mapped to reference human genome sequences using GATK. Some results were confirmed with Western blotting..

Figure 1 Liver Cell Models

Model System	Benefits and Limitations
Liver tissue	Autopsy or biopsy material Benefits: tissue available Limitations: Mixture o cannot use experimental approaches
Primary hepatocytes	Benefits: Biologically pure gold stand Difficult/expensive to procure, inter-in dedifferentiate in culture limits long to
THLE	SV40 Large T transformed primary he culture and cryopreservation, normal complex culture requirements makes t
HepaRG	Tumor cell line Benefits differentiate t cells, more metabolic functions Limita before use, short life in culture after c cost.
HuH-7, HepG2, SNU475 +	Tumor cell lines Benefits: easy to grow widely available, large literature Lim biochemical functions expressed

Novel Features

•CorrPaths is an experimental design tool that allows investigators to examine the suitability of specific cell line models for the analysis of particular biological pathways

•CorrPaths, unlike GSEA, focuses on single genes not whole pathways •CorrPaths compares cell line gene expression to a primary cell standard to identify pathway specific differences in a cell type specific manner •CorrPaths allows users to use annotated pathways from multiple sources, combine pathways that involve a gene of interest or define their own gene lists for analysis.

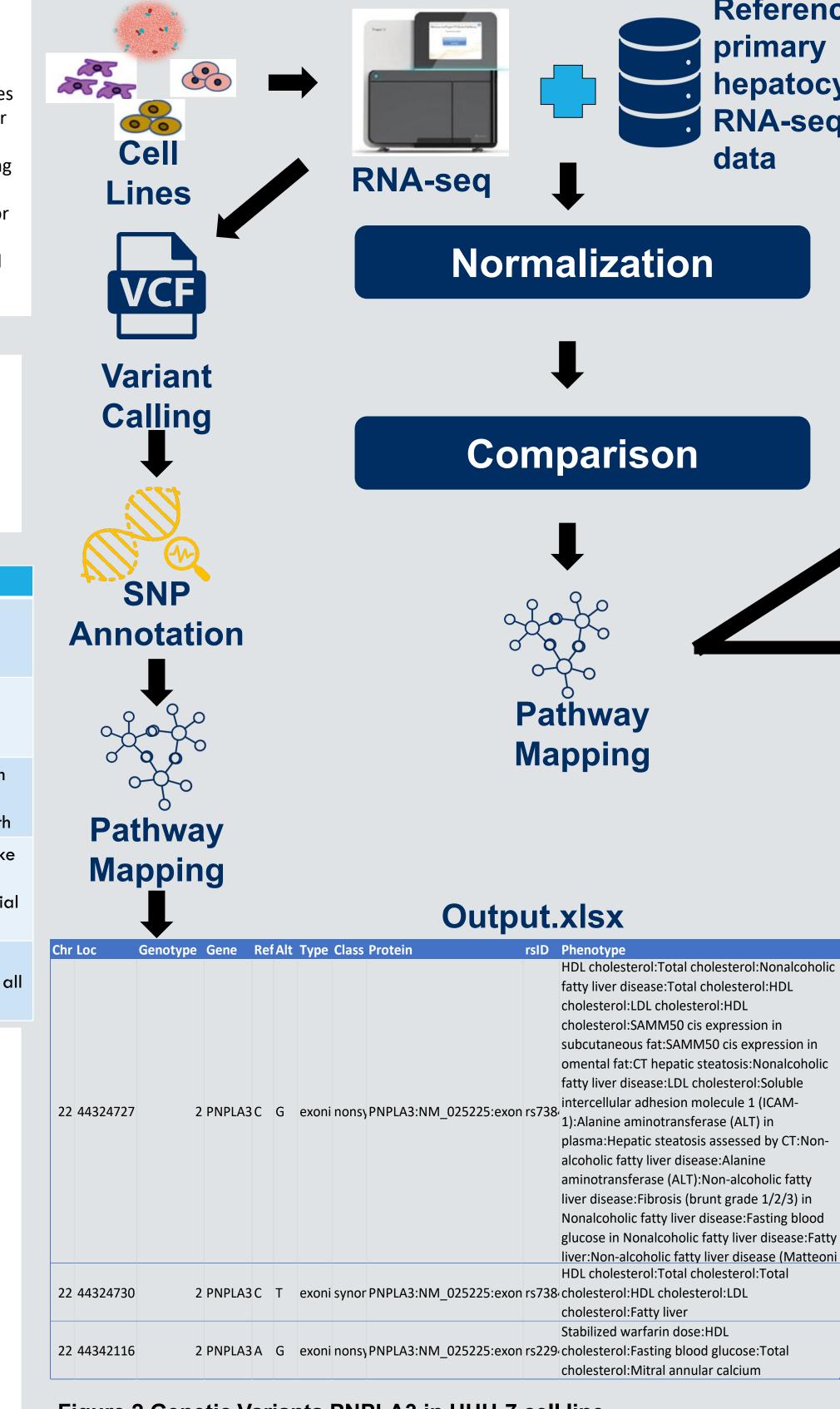
•CorrPaths combines both gene expression and gene variation in one application and allows for the identification of cell line models carrying specific variations or lack of gene express as disease models. Conclusions

CorrPaths can help in the design of functional experiments by identifying gene expression or variant issues that can interfere with the study of specific biological pathways of interest

Future

CorrPaths approach can be applied to other cell and tissue types to make specific version for other biological systems using different RNAseq data

Brian D. Halligan¹, Yue Chen¹, Antonio Oliveri¹, Maurice Tohme¹, and Elizabeth K. Speliotes^{1,2} ^{1Division of Gastroenterology Department of Internal Medicine,} 2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109


Medical relevance, diseased of cell types, BBP concerns,

ndard Limitations: individual variability, term experiments, high cost

hepatocytes Benefits: Growth in chromosome count Limitations: them more difficult to work with

to PHH like + cholangiocyte like ations: need to differentiate differentiation. High commercial

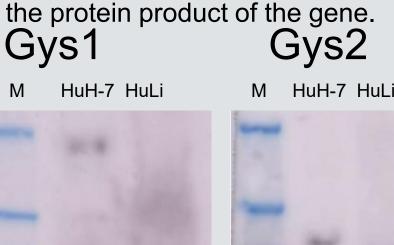
w in culture and cryopreserve, nitations: highly aneuploid, not all

Figure 2 Genetic Variants PNPLA3 in HUH-7 cell line

Genomic Data Workbook contains genomic variant data for each of the cell lines. Genomic variants from HuH-7 cells for the PNPAL3 gene. This shows that the HUH-7 cells are homozygous for the most significant MASLD causing human variant, RS738409.

Reference primary hepatocyte **RNA-seq**

Figure 3 Pathway Index Sheet


Index pathway worksheet allows direct access to each of the pathways in the workbook. Clicking on pathway ID link opens browser window with pathway details.

			с				
	A	В					
1	Pathway ID	Pathway Description					
71	R-HSA-6814848 t	REACTOME GLYCEROPHOSPHOLIPID CATABOLISM	7				
72	R-HSA-8982491 t	REACTOME GLYCOGEN METABOLISM	27				
73	R-HSA-3322077 t	REACTOME GLYCOGEN SYNTHESIS	16				
74	R-HSA-70171 tar	REACTOME GLYCOLYSIS	72				
75	R-HSA-1630316 t	REACTOME GLYCOSAMINOGLYCAN METABOLISM	124				
76	R-HSA-1660662 t	62 t REACTOME GLYCOSPHINGOLIPID METABOLISM					
77	R-HSA-389661 ta	REACTOME GLYOXYLATE METABOLISM AND GLYCINE DEGRADATION					
78	R-HSA-189451 ta	REACTOME HEME BIOSYNTHESIS	14				
79	R-HSA-189483 ta	REACTOME HEME DEGRADATION	15				
80	R-HSA-70921 tar	REACTOME HISTIDINE CATABOLISM					
81	R-HSA-2022928 t	2022928 t REACTOME HS GAG BIOSYNTHESIS					
82	R-HSA-2024096 t REACTOME HS GAG DEGRADATION						
83	R-HSA-2142850 t REACTOME HYALURONAN BIOSYNTHESIS AND EXPORT						
84	R-HSA-2142845 t REACTOME HYALURONAN METABOLISM						
85	R-HSA-2160916 t REACTOME HYALURONAN UPTAKE AND DEGRADATION						
86	R-HSA-1483115 t REACTOME HYDROLYSIS OF LPC						
87	R-HSA-1483249 t REACTOME INOSITOL PHOSPHATE METABOLISM						
88	R-HSA-163685 ta REACTOME INTEGRATION OF ENERGY METABOLISM						
1 R	A B EACTOME_GLYCOGEN_SYNTH	C D E F G H I IESIS Return to index	J				
ref_hepatocy							

T	REACTON	IE_GLYCOGEN_SYNTHESIS		Return to Inde	<u>2X</u>					
				ref_hepatocy						
2	Order	Gene	Description	te	HepG2	HepG2.C3A	HuH.7	SNU475	THLE	liver
3	1	UBB	Polyubiquitin-B	1.00	-0.19	-0.40	-0.50	-0.45	-0.17	-0.38
4	2	RPS27A	Ubiquitin-40S ribosomal protein S27a	1.00	NA	NA	NA	NA	NA	NA
5	3	UBC	Polyubiquitin-C	1.00	0.26	0.35	-0.14	0.40	0.21	0.07
6	4	UGP2	UTPglucose-1-phosphate uridylyltransferase	1.00	-0.18	0.42	-0.40	0.53	-0.13	1.24
7	5	UBA52	Ubiquitin-60S ribosomal protein L40	1.00	2.69	2.59	3.37	1.80	2.44	0.84
8	6	PGM1	Phosphoglucomutase-1	1.00	0.60	1.40	1.67	1.16	0.45	2.22
9	7	GBE1	1,4-alpha-glucan-branching enzyme	1.00	0.79	1.00	-0.26	1.32	1.73	0.78
10	8	PPP1R3C	Protein phosphatase 1 regulatory subunit 3C	1.00	0.85	-0.03	0.10	HuH.7 GYS2	0.75	2.22
11	9	GYS2	Glycogen [starch] synthase, liver	1.00	-9.17	NA	-4.68	N. Mean 0.248		
12	10	GYG1	Glycogenin-1	1.00	2.02	2.29	1.57	Standard devia Values 0.26 0.2		
13	11	GYG2	Glycogenin-2	1.00	1.23	1.62	3.61	Values 0.20 0.1	22 0.27	
14	12	PGM2	Phosphoglucomutase-2	1.00	2.78	2.87	2.81			
15	13	GYS1	Glycogen [starch] synthase, muscle	1.00	5.17	3.48	4.47			
16	14	EPM2A	Laforin, isoform 9	1.00	1.87	2.18	0.37			
17	15	NHLRC1	E3 ubiquitin-protein ligase NHLRC1	1.00	-0.10	-4.84	-1.80			
18	16	PGM2L1	Glucose 1,6-bisphosphate synthase	1.00	3.35	1.94	2.50	5.73	3.31	2.30
19										
20										
	< →	GLYCEROPHOSPHOLIPID_BIOSYNTHES GL		PHOSPHOLIPID_CATABOLISM		GLYCOGEN_METABOLISM		GLYCOGEN	SYNTHESIS	GLYCOLYSIS

Figure 4 Glycogen Synthesis Pathway

Individual pathway worksheets show the genes in the pathway ranked by their expression in the reference primary hepatocytes. For each cell line, the log₂ fold ratio with respect to the reference primary hepatocyte of gene expression is shown. Red=decreased Blue=increased relative to reference. NA indicates no gene expression was observed. ToolTips allow viewing of raw gene expression data. Clicking on gene name opens UniProt page for

Figure 5 Western blot of Gys1 and Gys2

Western blot of protein extracts from HuH-7 cells and normal human liver tissue (Hu Li) with anti-Gys1 and anti-Gys2 antibodies. Results show that although the liver tissue expresses the liver form of glycogen synthase (Gys2) and does not express the muscle form of glycogen synthase (Gys1), consistent with the RNAseq gene expression data, in HuH-7 cells, the Gys1 form is expressed and the Gys2 form is