Acute Rhinosinusitis in Adults

Patient population: Non-immune compromised adults.

Objectives: Improve quality of care and decrease costs by: (1) accurate diagnosis, (2) appropriate medical therapy, (3) effective radiological imaging, and (4) appropriate subspecialist consultation.

Key points

Definitions. Acute rhinosinusitis is an inflammation of the paranasal sinuses and the nasal cavity lasting no longer than 4 weeks. It can range from acute viral rhinitis (the common cold) to acute bacterial rhinosinusitis. Fewer than 5 in 1,000 colds are followed by bacterial rhinosinusitis.

Diagnosis. Estimate the probability of acute bacterial rhinosinusitis based on history, clinical presentation, and physical examination. Best predictors include maxillary toothache, poor response to decongestants, patient report of colored nasal discharge, and purulent secretions by exam. Duration of symptoms has some predictive value. Patients with symptoms beyond 10 days have an increased likelihood of acute bacterial rhinosinusitis. Upper respiratory tract symptoms that persist > 10 days, are persistently severe for 3-4 consecutive days, or show initial improvement but then worsen after 5 to 7 days are a moderately sensitive but not specific predictor of acute bacterial rhinosinusitis superimposed on a viral illness. [D*]

Treatment. Prescribe antibiotic therapy based on benefits and risks. Benefits depend on the probability of bacterial infection and the severity of symptoms. Risks of antibiotics include allergic reaction, Clostridium difficile infection, potential side effects, and promotion of bacterial resistance. Antibiotics have not been shown to decrease the risk of complication or progression to chronic rhinosinusitis. Symptoms resolve within two weeks without antibiotics in 70% of cases and with antibiotics in 85% of cases.

The first line antibiotic for acute bacterial rhinosinusitis is amoxicillin-clavulanate. It provides improved coverage for beta-lactamase positive Haemophilus influenzae and drug resistant Streptococcus pneumoniae. Use alternatives (eg, doxycycline, levofloxacin) only for patients allergic to amoxicillin-clavulanate. The usual initial antibiotic treatment should be 5-7 days.

For minimal or no improvement 3-5 days after starting initial treatment, re-evaluate your diagnosis and consider changing to an antibiotic with broader coverage to include resistant strains. The preferred option is levofloxacin.

Ancillary therapies (see Table 5) for acute rhinosinusitis have little supporting data. Some studies examining treatments for viral upper respiratory infections have shown:
- Efficacy in symptom control: decongestants (especially topical decongestants), topical anticholinergics and nasal steroids (high dose), [II A*]
- Possible efficacy: zinc gluconate lozenges, vitamin C, Echinacea extract, saline irrigation [conflicting or insufficient data].
- No significant benefit: guaifenesin (except possibly at high dose), saline spray, steam, antihistamines (except in patients where allergic rhinitis is a contributing factor).

For recurrent acute rhinosinusitis or acute rhinosinusitis superimposed on chronic rhinosinusitis, the addition of high dose nasal corticosteroids may decrease duration of symptoms and improve rate of clinical success. [II A*] However, this is inconvenient, has potential side effects, and significant cost.

Imaging. If symptoms of rhinosinusitis persist for more than three weeks despite antibiotics or recur more than three times per year, a sinus CT scan should be performed while the patient is symptomatic to reassess the diagnosis and determine need for referral. [II C/D*] CT scans provide much better definition than a plain sinus x-ray series. Plain sinus x-rays, therefore, are not recommended. New low dose CT scanners have substantial radiation dose reduction.

* Strength of recommendation:
1 = generally should be performed; II = may be reasonable to perform; III = generally should not be performed.

Level of evidence supporting a diagnostic method or an intervention:
A = randomized controlled trials; B = controlled trials, no randomization; C = observational trials; D = opinion of expert panel
Figure 1. Diagnosis of Acute Bacterial Rhinosinusitis

Estimate probability of acute bacterial rhinosinusitis (low, moderate, high) (see Table 1 &/or Table 3)

Offer patient symptomatic therapy (see Table 5)

Consider severity of symptoms and comorbidities (How sick is the patient?)

Evaluate possible benefit of antibiotics vs risk & side effects (Figure 2 and Table 2)

Choose antibiotic therapy (Table 4). Usual course: 5-7 days [A*]

Recurrence sinusitis ≥3 times/year or symptoms not resolving 3 weeks after starting antibiotic treatments?

Limited sinus CT while symptomatic (Order “Sinus CT Stealth”)?

Positive for inflammatory disease? (see Table 6)

Stop sinusitis treatment and reassess diagnosis (see Table 7)

Otolaryngologic consultation (endoscopic exam)

No antibiotics

No

Continue treatment as needed

* Levels of Evidence
A= randomized controlled trials
B= controlled trials, no randomization
C= observational trials
D= opinion of expert panel

Table 1. Diagnosis of Acute Bacterial Rhinosinusitis*

Best Predictors:
- Maxillary toothache
- Purulent secretion by examination
- Poor response to decongestants
- Abnormal transillumination (see text)
- History of colored nasal discharge

Probability of Rhinosinusitis:

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Probability</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9%</td>
<td>5% - 17%</td>
</tr>
<tr>
<td>1</td>
<td>21%</td>
<td>15% - 28%</td>
</tr>
<tr>
<td>2</td>
<td>40%</td>
<td>33% - 47%</td>
</tr>
<tr>
<td>3</td>
<td>63%</td>
<td>53% - 72%</td>
</tr>
<tr>
<td>4</td>
<td>81%</td>
<td>69% - 89%</td>
</tr>
<tr>
<td>5</td>
<td>92%</td>
<td>81% - 96%</td>
</tr>
</tbody>
</table>

Table 2. Antibiotic Treatment Considerations for Acute Bacterial Rhinosinusitis

A reasonable strategy for many patients is to treat symptomatically and recommend antibiotics only if symptoms do not begin to improve.

- ~70% of patients improve within 2 weeks without antibiotics [A*]
- ~85% of patients improve within 2 weeks with antibiotics [A*]
- ~15% of patients take longer than 2 weeks to improve even with antibiotics [A*]
- Antibiotics have not been shown to prevent complications (including chronic rhinosinusitis)
- Antibiotics may cause side effects, including severe allergic reaction

Table 3. Performance Characteristics of Signs and Symptoms of Acute Bacterial Rhinosinusitis 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Frequency (%)</th>
<th>Likelihood Ratio 3 (Finding Present)</th>
<th>Likelihood Ratio 3 (Finding Absent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxillary toothache</td>
<td>18</td>
<td>93</td>
<td>11</td>
<td>2.5</td>
<td>0.9</td>
</tr>
<tr>
<td>No improvement with decongestants</td>
<td>41</td>
<td>80</td>
<td>28</td>
<td>2.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Colored discharge</td>
<td>72</td>
<td>52</td>
<td>59</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cough</td>
<td>70</td>
<td>44</td>
<td>61</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purulent secretion</td>
<td>51</td>
<td>76</td>
<td>34</td>
<td>2.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Nasal speech</td>
<td>45</td>
<td>73</td>
<td>34</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Abnormal transillumination</td>
<td>73</td>
<td>54</td>
<td>56</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Sinus tenderness</td>
<td>48</td>
<td>65</td>
<td>39</td>
<td>1.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

2 Sensitivity = % of patients with sinusitis who have the symptom/sign
3 A likelihood ratio expresses the odds that a sign or symptom would occur in a patient with, as opposed to a patient without, sinusitis. When a likelihood ratio is above 1.0, probability of disease increases; when the likelihood ratio is below 1.0, probability of disease decreases.
Table 4. Antibiotic Therapy for Acute Rhinosinusitis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Cost *</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. First Line Antibiotic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>875/125 mg every 12 hours for 5-7 days</td>
<td>gen $8-10</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate, high dose</td>
<td>2000/125 mg every 12 hours for 5-7 days</td>
<td>gen $121-170</td>
</tr>
<tr>
<td>B. Alternative First Line Antibiotic (if allergic to or intolerant of amoxicillin-clavulanate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline hyclate</td>
<td>100 mg every 12 hours for 5-7 days</td>
<td>gen $8-10</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>500 mg daily for 5-7 days</td>
<td>gen $5-6</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>400 mg daily for 5-7 days</td>
<td>gen $18-24</td>
</tr>
<tr>
<td>C. If Treatment Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanate, high dose</td>
<td>2000/125 mg every 12 hours for 7-10 days</td>
<td>gen $168-240</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>500 mg daily for 7-10 days</td>
<td>gen $9-11</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>400 mg daily for 7-10 days</td>
<td>gen $24-33</td>
</tr>
</tbody>
</table>

* For cost presented as range, low=5 days, high=7 days. Cost=Maximum Allowable Cost (MAC) + $3 for generics on 30-day supply or less, Michigan Department of Community Health M.A.C. Manager, 12/18

Table 5. Adjuvant Therapy for Acute Rhinosinusitis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Cost *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely to be effective in treating symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decongestants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical2 Oxymetazoline 0.05% (Afrin®)</td>
<td>2 sprays each nostril every 12 hours for max 3 d</td>
<td>gen $3</td>
</tr>
<tr>
<td>Systemic Pseudoephedrine (Sudafed®)</td>
<td>60 mg every 6 hours or sustained release 120 mg every 12 hours</td>
<td>gen $10-23</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical Ipratropium 0.03% (Atrovent®)</td>
<td>2 sprays each nostril every 6 hours prn</td>
<td>gen $29</td>
</tr>
<tr>
<td>Ipratropium 0.06% (Atrovent®)</td>
<td>2 sprays each nostril every 6 hours prn</td>
<td>gen $74</td>
</tr>
<tr>
<td>Corticosteroid Nasal Spray in high doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluticasone (Flonase®) 50 mcg/spray</td>
<td>4 sprays (200 mcg) each nostril every 12 hours x 21 d</td>
<td>gen $21</td>
</tr>
<tr>
<td>[7.5 days/container (120 sprays), = 3 containers]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mometasone Furoate (Nasonex®) 50 mcg/spray</td>
<td>4 sprays (200 mcg) each nostril every 12 hours x 21 d</td>
<td>gen $237</td>
</tr>
<tr>
<td>[7.5 days/container (120 sprays), = 3 containers]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flunisolide 25 mcg/spray</td>
<td>8 sprays (200 mcg) each nostril every 12 hours x 21 d</td>
<td>gen $231</td>
</tr>
<tr>
<td>[6.25 days/container (200 sprays), = 4 containers]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibly effective in treating symptoms (for viral infections or colds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc gluconate lozenges</td>
<td>1 lozenge every 2 hours while awake</td>
<td>gen $6-12</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>2-3 g/day in divided doses</td>
<td>gen $10</td>
</tr>
<tr>
<td>Echinacea extract</td>
<td>Varies by preparation</td>
<td></td>
</tr>
<tr>
<td>Saline irrigation</td>
<td>30-120 ml (1/8-1/2 cup) per session</td>
<td>gen $11</td>
</tr>
<tr>
<td>No proven benefit or not studied in controlling symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antihistamines (Except when treating underlying Allergic Rhinitis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpheniramine (Chlor-Trimeton®)</td>
<td>4 mg every 4-6 hours or sustained release 8-12 mg every 12 hours</td>
<td>gen $8-23</td>
</tr>
<tr>
<td>Clemastine (Tavist®)</td>
<td>1.34 mg every 12 hours</td>
<td>gen $8</td>
</tr>
<tr>
<td>Diphenhydramine (Benadryl®)</td>
<td>25-50 mg every 6 hours</td>
<td>gen $12</td>
</tr>
<tr>
<td>Less-sedating (2nd generation) antihistamines (loratadine, fexofenadine, cetirizine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam, saline spray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaifenesin (except possibly at high dose)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Cost=Maximum Allowable Cost (MAC) + $3 for generics on 30-day supply or less, Michigan Department of Community Health M.A.C. Manager, 07/18

1 Many preparations combine decongestants and antihistamines.
2 Do not use for more than three consecutive days to decrease risk of rhinitis medicamentosa and atrophy.
Clinical Background

Clinical Problem and Management Issues

Definition. Acute rhinosinusitis is a symptomatic inflammation of the paranasal sinuses and nasal cavity lasting no longer than 4 weeks.

Diagnosis. Rhinosinusitis is common and accounts for up to 5% of visits to primary care physicians. Its cause may be viral, bacterial, allergic, or (rarely) of other etiology. Distinguishing acute bacterial rhinosinusitis from other types is important because of the potential benefit of antibiotic therapy. Although no single, simple factor confirms the diagnosis of acute bacterial rhinosinusitis, its probability can be estimated based on a number of signs and symptoms. In one study, however, a physician’s overall clinical impression was better than any single symptom or sign for predicting acute bacterial rhinosinusitis. For patients with persistent or recurrent symptoms, advances in imaging offer more informative options (limited sinus CT) than plain sinus x-rays.

Management. Symptoms of rhinosinusitis can last well over two weeks with or without antibiotic treatment. Expensive antibiotics are often prescribed when equally effective and less expensive alternatives are available. The long duration of symptoms in some patients may result in referral for otolaryngology evaluation before an adequate trial of medical therapy.

Rationale for Recommendations

Causes
Acute rhinosinusitis is primarily an infectious disease. Symptoms resolve completely with medical treatment in nearly 90% of cases. Approximately 20-30% of cases of acute rhinosinusitis are viral. The most common bacterial pathogens are Streptococcus pneumoniae (~20-43%) and Haemophilus influenzae (~22-35%), other Streptococcus species (3-9%), and Moraxella catarrhalis (~2-10%); less common are Staphylococcus aureus (~4%), anaerobes (~5%), and Haemophilus species (~8%). Several noninfectious factors are important in the pathogenesis of rhinosinusitis, including patency of sinus ostia, nasal airflow, mucociliary activity, immunocompetence, and the nature and quantity of secretions.

Probability estimation. The probability of acute bacterial rhinosinusitis can be estimated based on history and physical exam. The signs and symptoms found most likely to predict rhinosinusitis are given in Tables 1 and 3.

Williams, et al. (1992) studied VA general medicine patients suspected of having rhinosinusitis. The physician’s overall clinical impression was better than any single historical or examination finding. Other predictors include unilateral facial pain, pain with bending, and mildly elevated sedimentation rate. Findings demonstrating little predictive value, however, included headache, difficulty sleeping, sore throat, sneezing, malaise, itchy eyes, fever, chills or sweats, and painful chewing.

Transillumination was found by Williams, et al. (1992) to be among the 5 best predictors of rhinosinusitis. Many other studies have not found it to be helpful. Perform transillumination in a completely darkened room, using an extremely bright light (eg, Welch-Allyn Finnoff transilluminator or MagLite® flashlight). Penlights and otoscopes are inadequate to transilluminate bone. For the maxillary sinuses, place the light source over the infraorbital ridge and judge light transmission through the hard palate by looking into the patient's mouth, comparing side to side. For the frontal sinuses, place the light source into the superior portion of the orbit (some patients find this too painful). Interpretation of the frontal sinuses may be difficult because they naturally develop asymmetrically. You will be using a bright light, so obviously you must take great care to avoid burning the patient. Findings are normal (typical light

Table 6. Interpreting Sinus CT Scan Reports

<table>
<thead>
<tr>
<th>Red Flags*</th>
<th>Abnormal</th>
<th>Not Generally Concerning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unilateral disease</td>
<td>• Sinus opacification</td>
<td>• Retention cysts</td>
</tr>
<tr>
<td>• Sinus expansion</td>
<td>• Air fluid levels (> minimal)</td>
<td>• Concha bullosa and other anatomic variants</td>
</tr>
<tr>
<td>• Bony erosion</td>
<td>• Marked mucosal thickening</td>
<td>• Minimal mucosal thickening</td>
</tr>
</tbody>
</table>

*Indicate Need for Immediate Referral

Table 7. Alternative Diagnoses

- Allergic rhinitis
- Headache, migraine or tension
- Nasal drying (eg, Sjogren’s syndrome, keratoconjunctivitis sicca)
- Gastroesophageal reflux
- Atrophic rhinitis
- TMJ dysfunction, dental pain
- Atypical facial pain

Table 6. Interpreting Sinus CT Scan Reports

- Polyps
- Sinus opacification
- Air fluid levels (> minimal)
- Marked mucosal thickening
- Polyps
- Retention cysts
- Concha bullosa and other anatomic variants
- Minimal mucosal thickening

Table 7. Alternative Diagnoses

- Allergic rhinitis
- Headache, migraine or tension
- Nasal drying (eg, Sjogren’s syndrome, keratoconjunctivitis sicca)
- Gastroesophageal reflux
- Atrophic rhinitis
- TMJ dysfunction, dental pain
- Atypical facial pain

Clinical Background

Clinical Problem and Management Issues

Definition. Acute rhinosinusitis is a symptomatic inflammation of the paranasal sinuses and nasal cavity lasting no longer than 4 weeks.

Diagnosis. Rhinosinusitis is common and accounts for up to 5% of visits to primary care physicians. Its cause may be viral, bacterial, allergic, or (rarely) of other etiology. Distinguishing acute bacterial rhinosinusitis from other types is important because of the potential benefit of antibiotic therapy. Although no single, simple factor confirms the diagnosis of acute bacterial rhinosinusitis, its probability can be estimated based on a number of signs and symptoms. In one study, however, a physician’s overall clinical impression was better than any single symptom or sign for predicting acute bacterial rhinosinusitis. For patients with persistent or recurrent symptoms, advances in imaging offer more informative options (limited sinus CT) than plain sinus x-rays.

Management. Symptoms of rhinosinusitis can last well over two weeks with or without antibiotic treatment. Expensive antibiotics are often prescribed when equally effective and less expensive alternatives are available. The long duration of symptoms in some patients may result in referral for otolaryngology evaluation before an adequate trial of medical therapy.

Rationale for Recommendations

Causes
Acute rhinosinusitis is primarily an infectious disease. Symptoms resolve completely with medical treatment in nearly 90% of cases. Approximately 20-30% of cases of acute rhinosinusitis are viral. The most common bacterial pathogens are Streptococcus pneumoniae (~20-43%) and Haemophilus influenzae (~22-35%), other Streptococcus species (3-9%), and Moraxella catarrhalis (~2-10%); less common are Staphylococcus aureus (~4%), anaerobes (~5%), and Haemophilus species (~8%). Several noninfectious factors are important in the pathogenesis of rhinosinusitis, including patency of sinus ostia, nasal airflow, mucociliary activity, immunocompetence, and the nature and quantity of secretions.

Probability estimation. The probability of acute bacterial rhinosinusitis can be estimated based on history and physical exam. The signs and symptoms found most likely to predict rhinosinusitis are given in Tables 1 and 3.

Williams, et al. (1992) studied VA general medicine patients suspected of having rhinosinusitis. The physician’s overall clinical impression was better than any single historical or examination finding. Other predictors include unilateral facial pain, pain with bending, and mildly elevated sedimentation rate. Findings demonstrating little predictive value, however, included headache, difficulty sleeping, sore throat, sneezing, malaise, itchy eyes, fever, chills or sweats, and painful chewing.

Transillumination was found by Williams, et al. (1992) to be among the 5 best predictors of rhinosinusitis. Many other studies have not found it to be helpful. Perform transillumination in a completely darkened room, using an extremely bright light (eg, Welch-Allyn Finnoff transilluminator or MagLite® flashlight). Penlights and otoscopes are inadequate to transilluminate bone. For the maxillary sinuses, place the light source over the infraorbital ridge and judge light transmission through the hard palate by looking into the patient's mouth, comparing side to side. For the frontal sinuses, place the light source into the superior portion of the orbit (some patients find this too painful). Interpretation of the frontal sinuses may be difficult because they naturally develop asymmetrically. You will be using a bright light, so obviously you must take great care to avoid burning the patient. Findings are normal (typical light
transmission), dull (reduced light transmission), or opaque (no light transmission).

Duration of symptoms has some predictive value. Although fewer than 5 in 1,000 colds are followed by bacterial rhinosinusitis, upper respiratory tract infections that persist longer than 10 days or worsen after 5 to 7 days are a moderately sensitive but not specific predictor of acute bacterial rhinosinusitis superimposed on a viral illness.

Nasal drainage associated with an uncomplicated rhinovirus upper respiratory tract infection can occasionally persist for 2 to 3 weeks and may be clear or discolored. A patient’s report of purulent nasal drainage is a moderately sensitive (72%) but less specific (52%) symptom of acute bacterial rhinosinusitis. In contrast, a physician’s observation of purulent nasal secretion is a less sensitive (51%) but relatively specific (76%) sign.

Diagnostic imaging, limited sinus CT. If symptoms persist after appropriate medical treatment or recur more than 3 times per year, refer the patient for imaging to document the presence and extent of sinus disease. Imaging must be performed while the patient is symptomatic – otherwise it is of little value.

In most cases, the preferred method of imaging the paranasal sinuses is a sinus computed tomography (CT), which is an excellent tool for identifying patients with acute rhinosinusitis, and may help differentiate patients with rhinosinusitis from those with allergic rhinitis, atypical facial pain, and other problems. Note that sinus CT images do include images of tooth roots, disease of which can be a source of or mimic the signs of sinusitis.

For patients who may have had or need repeated scans, low dose “Sinus CT Stealth” scans provide the advantage of substantial radiation dose reduction compared to a full sinus CT scan. However, if surgery is anticipated, a standard sinus/facial bone CT scan is preferred by many surgeons. At UM Health System the charge is $1,973 for any sinus CT scan (low dose, limited, or full) [July 2018].

To help interpret CT scan reports, Table 6 lists “red flags” that should prompt urgent otolaryngology referral (eg, unilateral recurrent or chronic disease, bony erosion, or sinus expansion). It also lists findings that are abnormal as well as those that are generally not concerning.

CT findings must always be correlated with clinical information. If imaging suggests no inflammatory disease, then rhinosinusitis is not a likely cause of a patient’s symptoms. Discontinue rhinosinusitis therapy, review the history and examination, and consider alternative diagnoses, some of which are listed in Table 7.

Neither plain sinus x-rays nor magnetic resonance imaging (MRI) is recommended. Compared to plain sinus x-rays, the sinus CT yields a far superior definition of sinus pathology, sinus obstruction, and ostiomeatal complex disease. MRI fails to demonstrate the bony anatomy of the ostiomeatal complex and is overly sensitive to mucosal changes.

Sinus aspiration/nasal culture. Sinus puncture and aspiration is not indicated for routine acute rhinosinusitis. Patients that are evaluated by a specialist for an active and recurrent infection may benefit from endoscopic cultures of the discharge as it exits the sinuses, in order to guide antibiotic therapy.

Dental sinusitis. Clues for dental source include poor oral health, single tooth sensitivity or pain, facial swelling, and foul nasal odors.

Complications. Signs and symptoms worrisome for intracranial or orbital extension of infection include high fever, severe pain, worsening headache, meningeal signs, infraorbital hypesthesia, altered mental status, significant facial swelling, diplopia, ptosis, chemosis (swelling of tissue lining eyelid and eye surface), proptosis, and pupillary or extraocular movement abnormalities.

Medical Therapy

Decision to use antibiotics. As noted in Table 2, approximately 70% of patients with acute bacterial rhinosinusitis improve within 2 weeks without antibiotics; approximately 85% improve with appropriate antibiotics. The incidence of severe complications and progression from acute to chronic rhinosinusitis is extremely low. In addition, there is no evidence that antibiotic therapy of rhinosinusitis prevents severe complications or the progression to chronic disease. For these reasons, the decision to use antibiotics in an individual patient should be influenced very little or not at all by the desire to prevent complications or the development of chronic rhinosinusitis.

A reasonable strategy is to assess a patient’s clinical probability of rhinosinusitis (Tables 1 and 3). If symptoms, clinical probability, and comorbidities are low to moderate, use symptomatic therapies without antibiotics. If, on the other hand, symptoms are moderate to severe or worsening and clinical suspicion for bacterial rhinosinusitis is high, include antibiotics in the treatment regimen (Figure 2).

Antibiotic selection. The recommended first line antibiotic is amoxicillin-clavulanate 875/125 mg twice daily for 5-7 days (Table 4, Section A). For patients at increased risk of resistant infections, initial treatment can be high dose amoxicillin-clavulanate 2000/125 mg twice daily for 5-7 days.

If the patient is allergic to or intolerant of amoxicillin-clavulanate, initial treatment can be Doxycycline 100 mg twice daily for 5-7 days. If the patient is allergic to or intolerant of both amoxicillin-clavulanate and doxycycline, initial treatment can be levofloxacin 500 mg daily for 5-7 days or moxifloxacin 400 mg daily for 5-7 days.
Incomplete resolution. Patients should have some improvement in symptoms by 3-5 days after starting antibiotic therapy. Although symptoms can persist for more than 10 days, they should be continuing to improve. If symptoms recur, worsen, or do not improve, reconsider the diagnosis. The patient may require another course of antibiotics with an alternative agent.

Antibiotic failures. Many of the trials of antibiotic therapy for acute bacterial rhinosinusitis predate more recent increases in antimicrobial resistance.

A different antibiotic may be needed for adults with symptoms and signs that are highly suspicious for acute bacterial rhinosinusitis, but who have little or no improvement with the first antibiotic (see Table 4).

Infections likely to be of dental origin may involve oral anaerobes producing beta lactamase. Amoxicillin-clavulanate remains the recommended antibiotic. In some cases, a second, anaerobe-covering drug (eg, metronidazole or clindamycin) may need to be added.

Depending upon recent (within 4-6 weeks) antibiotic exposure and antimicrobial resistance patterns in your area, consider coverage for resistant Streptococcus pneumoniae, Haemophilus influenzae, and/or Moraxella catarrhalis. High dose amoxicillin-clavulanate may be of benefit. Little evidence is available regarding risk factors for rhinosinusitis due to penicillin resistant S. pneumoniae. However, for community acquired pneumonia, major risk factors for penicillin resistant S. pneumoniae are: antibiotics (especially beta-lactam) within 3 months; age greater than 65 years; alcoholism; and immunocompromised status.

To reduce the chance of antibiotic resistance, use fluoroquinolone antibiotics only after treatment failure with a first line antibiotic (or in the case of allergy to the first-line antibiotics). Ciprofloxacin is not recommended as a second line antibiotic for acute bacterial rhinosinusitis because it has limited activity against S. pneumoniae. In contrast, levofloxacin and moxifloxacin have better activity against S. pneumoniae. However, all fluoroquinolones are associated with high rates of E coli resistance and propensity for collateral adverse effects (eg, resistance, C. difficile infection) making them a less desirable option. In addition, fluoroquinolones increase the risk of tendon rupture in those over age 60, in kidney, heart, and lung transplant recipients, and with use of concomitant steroid therapy. Use of fluoroquinolones has also been associated with risk for serious nerve damage (neuropathy), which may be irreversible.

Antibiotics options for treatment failures include 7-10 days of (Table 4, Section C):
- Amoxicillin-clavulanic acid high dose, XR 2000/125 every 12 hours
- Levofoxacin 500 mg daily
- Moxifloxacin 400 mg daily

Antibiotics that should not be used for acute bacterial rhinosinusitis include:
- Ciprofloxacin, due to limited activity against S. pneumoniae.
- Macrolides (azithromycin and clarithromycin), due to high rates of resistance among S. pneumoniae.
- Trimethoprim/sulfamethoxazole, due to high rates of resistance among both S. pneumoniae and Haemophilus influenzae.

Partial immunosuppression. Patients with acute sinusitis who are partially immunosuppressed (ie, not neutropenic) should be managed on a case by case basis. Consider holding or reducing immunosuppression if the infection fails to improve or resolve in a timely fashion after treatment is initiated.

Adjuvant therapies. Adjuvant therapies are listed in Table 5. Little evidence exists regarding the use of ancillary therapies for acute rhinosinusitis. Some studies support the use of adjuvant medications, but many contradict one another or show only minimal, if any, improvement in symptoms. Thus, while adjuvant therapies may improve symptoms of acute rhinosinusitis and colds, they have not been shown to change the course of the disease (except possibly zinc lozenges). Nevertheless, because adjuvant therapies tend to be inexpensive and have few side effects, use based on the clinician’s individual judgment may be justified.

Likely to be effective in treating symptoms:
- Topical steroids reduce edema and inflammation and may improve symptoms in acute rhinosinusitis. Studies have not clearly demonstrated a benefit in any role other than symptom management. Expert opinion suggests that high dose nasal steroids are most likely to be effective.
- Topical decongestants may decrease nasal congestion; expert opinion suggests that they may improve drainage. Topical decongestant use should be limited to 3 days due to the risk of rebound vasodilation (rhinitis medicamentosa) or atrophic rhinitis.
- Topical anticholinergics may be used as adjunct therapy to decrease the production of mucus and diminish thin rhinorrhea for patients. This may be effective for symptom relief. While it is plausible that thickening of the mucus could impair its clearance from the sinuses (thereby possibly perpetuating the acute infection or leading to chronic rhinosinusitis), this phenomenon has not been documented despite numerous clinical trials with anticholinergic medications.

Likely to be effective in acute rhinosinusitis for persons with a history of chronic or recurrent sinusitis:
- Adding high dose nasal steroid spray to antibiotic therapy has been shown in controlled clinical trials to significantly reduce the duration and severity of symptoms of acute rhinosinusitis for recurrent acute rhinosinusitis or acute rhinosinusitis superimposed on chronic rhinosinusitis.
Possibly effective in treating symptoms.

- Vitamin C and zinc gluconate lozenges have been shown in some studies to provide more prompt resolution of symptoms in upper respiratory infections. Other studies have refuted these claims.
- Echinacea extract has demonstrated a trend toward symptom improvement. While the evidence for these agents is not clear, their side-effect profile is relatively benign.
- Nasal irrigation (eg, neti pot) with either isotonic or hypertonic saline may improve symptoms. To decrease the risk of meningoencephalitis caused by amoeba, irrigation solutions should be made using sterile, distilled, or boiled water.

No proven benefit or not studied in treating symptoms.

- Antihistamines have anticholinergic properties, but their effectiveness in treating acute rhinosinusitis in non-atopic individuals is not demonstrated. The second generation antihistamines are less likely to be effective for diminishing rhinorrhea, and first generation antihistamines may cause sedation and impair psychomotor functioning.
- Expectorants, such as guaifenesin, thin secretions and thus theoretically improve mucus clearance. No evidence supports or refutes this theory.
- Nasal saline spray, local heat, and inhaled steam may soften secretions and provide symptomatic relief, but little objective evidence supports their use.
- Oral corticosteroids similarly have no proven benefit, although in theory they may decrease mucosal inflammation and re-establish mucus clearance. The significant side effects of systemic steroids must be weighed against any theoretical benefit.

Otolaryngology Referral and Surgical Alternatives

Otolaryngology referral. Refer for evaluation:

- Patients who have failed appropriate medical therapy for acute rhinosinusitis and who have evidence of inflammatory disease on limited sinus CT.
- Patients with more than 3 episodes per year of acute rhinosinusitis and evidence of inflammatory disease on CT.

Consider urgent referral for patients who have worrisome symptoms after 24 - 72 hours of antibiotic therapy, especially if the patient has been taking broad-spectrum antibiotics. Worrisome symptoms include: worsening pain, worsening headache, high fever, cranial neuropathies, meningitis symptoms, or redness or swelling of the orbit or soft tissues over the sinuses.

Otolaryngology evaluation. An otolaryngology evaluation will almost always include nasal endoscopy. If rhinosinusitis is confirmed, a detailed CT scan may be requested to identify the extent of sinus disease and to visualize bony detail.

Surgical alternatives. Surgery for acute rhinosinusitis is reserved for patients with threatened intraorbital or intracranial complications, for those who fail to respond to oral and parenteral antibiotics, and for some immunocompromised patients. For less urgent surgical intervention, potential indications include persistent rhinosinusitis despite appropriate medical therapy, and documented recurrent rhinosinusitis with identifiable and related anatomical or acute pathological abnormalities in the ostiomeatal complex. In limited studies, the reported success of endoscopic sinus surgery has been favorable with an expectation of benefit for 80% to 90% of patients. Possible complications mirror those of traditional sinus surgery. Major complications are rare, but include hemorrhage, cerebrospinal fluid leakage, intracranial trauma, blindness, and visual disturbances. Other complications include periorbital hematoma, subcutaneous orbital emphysema, overflow of tears (epiphora) due to scarring of the nasolacrimal duct, nasal scarring or adhesions (synechiae), and closure of natural ostia.

Strategy for Literature Search

The literature search for this update began with the results of the literature searches performed in 1996 to develop the initial guideline, in 1998 for an update, and in 2004 for an update that included literature through April 2004.

The literature search conducted in 2010 for this update used keywords that were almost identical to those used in the previous searches. However, instead of beginning the search with literature in 2004, the guideline team accepted the search strategy and results of the search performed for the “Clinical practice guideline: Adult sinusitis” commissioned by the American Academy of Otolaryngology – Head and Neck Surgery (see Related National Guidelines). That search included literature through November 2006. The search for this update added literature from December 2006 through April 2010. That time frame was used for all keyword searches except for dental sinusitis and odontogenic sinusitis, new search terms for which the search began with January 2000.

The search was conducted prospectively on Medline using the major keywords of: rhinosinusitis, sinusitis; clinical guidelines, controlled clinical trials, cohort studies; adults; and English language. Terms used for specific topic searches within major key words included: history; physical exam, signs, symptoms; predictors; computed tomography, magnetic resonance imaging, x-ray, ultrasound; sinus aspiration; nasal culture; dental sinusitis, odontogenic sinusitis; diagnosis not included above; observation, saline, steam, postural drainage; decongestants; cough suppressants; antihistamines; antibiotics; guaifenesin; corticosteroids; zinc; vitamin C; ipratropium; capsaicin; Echinacea; treatment failure, recurrence, persistent; immunocompromised, immunosuppressed, immunomodulators, transplant; treatment or management.
not included above. Specific search strategy available upon request.

The searches were conducted in components each keyed to a specific causal link in a formal problem structure. The search was supplemented with recent clinical trials known to expert members of the panel. Negative trials were specifically sought. The search was a single cycle. When possible, conclusions were based on prospective randomized controlled trials. In the absence of randomized controlled trials, observational studies were considered. If none were available, expert opinion was used.

Related National Guidelines

This University of Michigan Health System (UMHS) Clinical Guideline on Acute Rhinosinusitis in Adults is consistent with:

Disclosures

UMHS endorses the Guidelines of the Association of American Medical Colleges and the Standards of the Accreditation Council for Continuing Medical Education that the individuals who present educational activities disclose significant relationships with commercial companies whose products or services are discussed. Disclosure of a relationship is not intended to suggest bias in the information presented, but is made to provide readers with information that might be of potential importance to their evaluation of the information.

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Company</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Van Harrison, PhD</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Eric P. Skye, MD</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Jeffrey E. Terrell, MD</td>
<td>Xoran</td>
<td>Shareholder</td>
</tr>
<tr>
<td>Denise H. Zao, MD</td>
<td>(none)</td>
<td></td>
</tr>
</tbody>
</table>

Review and Endorsement

Drafts of this guideline were reviewed in clinical conferences and by distribution for comment within departments and divisions of the University of Michigan Medical School to which the content is most relevant: Family Medicine, General Medicine, and Otolaryngology–Head and Neck Surgery. The Executive Committee for Clinical Affairs of the University of Michigan Hospitals and Health Centers endorsed the final version.

Acknowledgments

The following individuals are acknowledged for their contributions to previous versions of this guideline:

2004: Jane McCort, General Internal Medicine; Daniel Dubay, MD, General Internal Medicine; Van Harrison, PhD, Medical Education; James Peggs, MD, Family Medicine; Jeffrey Terrell, MD, Otolaryngology; and Richard Orlandi, MD, Otolaryngology.

2005: Jane T. McCort, MD, General Internal Medicine; R. Van Harrison, PhD, Medical Education; James F. Peggs, MD, Family Medicine; and Jeffrey E. Terrell, MD, Otolaryngology.

Annotated References

For general information:

A review of randomized trials of antibiotics for acute maxillary sinusitis (57 studies met inclusion criteria) found no significant differences in comparisons between classes of antibiotics. Authors conclude that antibiotics have a small treatment effect in patients with uncomplicated acute sinusitis, with 80% of patients not receiving antibiotics improving within two weeks. The small benefit of antibiotic treatment should be weighed against the potential for adverse effects at the individual and general population levels.

Summary of pharmacokinetics and pharmacodynamics and how they relate to the effectiveness of antimicrobial therapy. These updated guidelines include most recent management principles, antimicrobial susceptibility patterns, and therapeutic options.

Lau J, Zucker D, Engels EA, Balk E, et al. Diagnosis and treatment of acute bacterial rhinosinusitis. Evidence Report/Technology Assessment No. 9 (Contract 290-97-

Guidelines for the diagnosis and initial management of suspected acute bacterial rhinosinusitis in adults and children.

Selected issues:

For patients with acute rhinosinusitis and a history of chronic or recurrent sinusitis, cefuroxime plus intranasal corticosteroids (at relatively high dose x 21 days) had significantly higher rate of clinical success and faster rate of improvement than cefuroxime plus placebo spray.

Meta-analysis of 6 trials assessing effectiveness of zinc on cold symptoms.

Prospective study of VA general medicine patients that compared clinical findings with plain sinus radiographs in diagnosis of sinusitis.