UMCCC, the NCRC and Translational Science

Mission Statement
Our research mission is the conquest of cancer through innovation and collaboration. We seek to accomplish this by creating a stimulating, collaborative research environment where M.D.’s and Ph.D.’s, medical and post-doctoral research fellows and clinicians, graduate students and undergraduates alike can come together to conceive, inspire and drive scientific innovation. Through our integrated, multi-disciplinary approach we will establish the University of Michigan as the international leader in cancer stem cell research and resulting targeted therapies.

About Dr. Wicha’s Laboratory
Dr. Max S. Wicha is a pioneering force in Cancer Stem Cell (CSC) biology. According to the ISI Citation Index, Dr. Wicha is the most highly-cited investigator in the entire field of CSCs. His group was the first to identify breast CSCs. Dr. Wicha’s laboratory identified a number of stem cell markers and developed in vitro and in vivo models to isolate and characterize these cells. These research models and resources have been widely adopted by other investigators. His laboratory subsequently elucidated a number of intrinsic and extrinsic pathways which regulate self-renewal and cell fate decisions in CSCs. Recently, he has focused on translating his pre-clinical research findings into the development of clinical trials designed to target breast CSCs.

Historical Context- A Record of Success
The University of Michigan Comprehensive Cancer Center (UMCCC) http://www.cancer.med.umich.edu/about/index.shtml was founded by Dr. Max S. Wicha in 1988 and actively facilitates innovative, collaborative oncology research throughout the University of Michigan and beyond. The UMCCC is a matrix organization with 311 members representing ten schools and institutes across the University. Eight of these ten schools are ranked in the top ten nationally. The UMCCC is currently ranked third nationally in peer-reviewed grants support from the National Cancer Institute. The strategy of the UMCCC has been to organize multidisciplinary research programs that reach across traditional department and school boundaries to promote and coordinate prevention, basic and clinical cancer research. UM cancer investigators have made numerous fundamental discoveries over the past decade. The creation of a translational research engine at the NCRC represents a unique opportunity to transform these important discoveries into clinical advancements that will significantly improve the way cancer is diagnosed and treated.

Dr. Wicha Pioneers Translational Science at the North Campus Research Complex
Cancer remains the number two cause of disease-related mortality in the United States and worldwide. Recent articles have reinforced what cancer clinicians know very well; progress in the treatment of the most common forms of cancer has been frustratingly slow, yielding only modest improvement in survival rates. In contrast, spectacular advancements have been made in basic research to characterize and understand the fundamental molecular underpinnings that drive cancer. These laboratory discoveries have the potential to completely transform our
approach to cancer, but only once basic molecular knowledge is translated into practical
treatments. The molecular analysis of tumors has revealed significant variation in the pathways
that drive tumor growth and metastasis. The discovery of genes linked directly to cancer and the
molecular pathways these genes influence has allowed scientists to draw a more accurate road
map of the nuances of cancer and its progression. Today’s drug development efforts use this map
to focus on targeted therapies that tackle cancer specific events with greater precision. Targeted
therapy is now the dominant approach in cancer therapeutics, driving the majority of new cancer
drugs being developed in both academic and commercial biotechnology. The development of
targeted therapies requires collaboration of specialized investigators to:

• Identify and characterize new molecular targets
• Validate these targets in cell cultures and in animal models
• Develop new drugs to hit these targets
• Test these new drugs in clinical trials

The Cancer Stem Cell Hypothesis
There is ever increasing evidence that the development of many cancers may be driven by a
subpopulation of cells termed Cancer Stem Cells (CSCs). These cells display self-renewal and
boundless differentiation potential and exhibit radiation and chemotherapy resistance which may
contribute to relapse and death. Significant progress in developing more effective cancer
therapies may depend on the effective targeting of CSC populations. The University of Michigan
is already one of the leading institutions in the world in basic cancer research and drug discovery
and is world renowned for its expertise in CSC biology. Developing a translational research
engine at the NCRC represents a unique opportunity to translate the most important CSC basic
science discoveries into clinical advancements that will significantly improve the way cancer is
diagnosed and treated.

Recent Developments
In May 2012 Dr. Wicha relocated his Experimental Breast Cancer Research Laboratories and
over fifty researchers to the North Campus Research Complex (NCRC) buildings 26 and 20W
and established the Translational Oncology Program (TOP). With the formation of the TOP, Dr.
Wicha has engaged the interest of the best and brightest CSC researchers to the NCRC. The TOP
will be directed by renowned CSC investigator, Dr. Diane Simeone, whose pancreas research is
highly regarded. The TOP seeks to drive innovative cancer therapies and is uniquely qualified
with numerous leading laboratories in CSC research. TOP investigators are presently exploring
cancers of the breast, lung, pancreas, head and neck, colon, prostate and thyroid. By working
together and sharing the ample scientific resources of the NCRC, TOP scientists can make progress more rapidly than would be possible by working alone. It is hoped this collaborative approach will revolutionize cancer treatments by targeting and destroying the cells responsible for disease recurrence and metastasis. In Dr. Wicha's words, “In many ways, the NCRC embodies the very best of Michigan and epitomizes what sets our institution apart – our ability to focus the efforts of the top minds in diverse fields to find answers to society’s greatest challenges.”