1. Ventilator Management

Indications for Mechanical Ventilation

- Apnea
- Ventilatory insufficiency
 - Increase in PaCO2 and decrease in pH
- Refractory hypoxemia

Complications Associated with Mechanical Ventilation

- Hypotension
- Increased intrathoracic pressure decreases venous return to the heart
- Increased risk of ventilator associated pneumonia (VAP)
 - Keep HOB at ≥ 30
 - Maintain frequent, good oral care
- Problems with endotracheal tube
 - Mucous plugging
 - Tube may become dislodged
 - Kinking or biting of tube
 - Cuff rupture
 - Pneumothorax

Initial Ventilator Settings—parameters to be clarified

- Type of ventilation
- Mode of ventilation
- Tidal volume or peak inspiratory setting
- Respiratory rate
- FiO2
- PEEP (Positive End Expiratory Pressure)

Types of Ventilation

- Volume Cycled Ventilation (VCV)
 - A pre-selected tidal volume is delivered at the pressure required. *Tidal volume* guaranteed.
 - Peak inspiratory pressure will vary depending on airway resistance and lung compliance.
- Pressure Control Time-Cycled Ventilation (PCV)
 - Operator selects inspiratory pressure and inspiratory time
 - Breath is terminated when inspiratory time is reached
Inspiratory pressure is guaranteed; tidal volume is dependant on airway resistance and lung compliance

- **Pressure Support (PSV)**
 - Requires intact respiratory drive
 - Operator selects inspiratory pressure
 - Patient initiates breath, pressure quickly rises to set pressure and is maintained throughout the inspiratory phase
 - Tidal volume determined by lung compliance and inspiratory effort

Modes of Ventilation

- **Assist/Control (A/C)**
 - Also called continuous mandatory ventilation (CMV)
 - Patient guaranteed pre-set tidal volume/pressure at pre-set rate
 - May breathe above pre-set rate and will receive pre-set tidal volume/pressure with each breath
- **Synchronized Intermittent Mandatory Ventilation (SIMV)**
 - Patient guaranteed set volume/pressure at set rate
 - Patient may breathe spontaneously in addition to set rate
 - Pressure support may be added to spontaneous breaths
- **Continuous Positive Airway Pressure (CPAP)**
 - Spontaneous breathing with a low level of positive pressure throughout the breath

Tidal Volume

- Patients w/o pulmonary process
 - 8-10cc/kg ideal body weight
- Patients with ARDS:
 - 6cc/kg ideal body weight

Respiratory Rate

- Adjust to desired minute ventilation (usually 12-15 bpm)

- FIO2
 - start at 100%; titrate for Spo2 > 90%

Positive End Expiratory Pressure (PEEP)

- Indications for PEEP
 - Maintain alveolar recruitment in ARDS
 - Improve triggering ability in intubated COPD patients on mechanical ventilation
- Used in patients with ARDS to improve oxygenation
- Works by re-establishing FRC and preventing alveolar collapse (de-recruitment)
- May require levels of 8-20 cmH2O
- Complications associated with PEEP
 - Decreased cardiac output
- Should perform “Best PEEP” trial for PEEP > 10 cmH2O
- Goal is to maximize O2 delivery to tissues
- Increased risk of pneumothorax
- Use in unilateral disease may result in over distension of the more compliant lung and cause shunting of blood to the less compliant lung

- **Prophylactic PEEP**
 - A PEEP of 3 to 5 cmH2O is typically applied to all intubated patients due to the possible loss of physiologic PEEP during intubation

- **Intubated COPD patients**
 - May improve triggering by patients experiencing auto_PEEP
 - Increasing set PEEP may raise trigger level closer to total PEEP
 - Should not use if set PEEP raises total PEEP

Airway Pressures

- **Peak Inspiratory Pressure**
 - The pressure required to move air through the endotracheal tube, airways and to the alveoli
 - Difference between plateau and peak pressure determined by resistance
 - Resistance (ETT and airways)
 - Compliance
 - PEEP
 - VT
 - Inspiratory flow

- **Plateau pressure**
 - A reflection of alveolar pressure – the pressure required to inflate the lung
 - High peak alveolar pressures infer alveolar over distension
 - Should be kept < 30 cmH2O

Ventilator Adjustments

- **Hypoxemia**
 - Increase FIO2
 - Increase mean alveolar pressure
 - Increase mean airway pressure
 - Increase PEEP
 - Increase I:E Ratio (Inverse Ratio Ventilation)

Respiratory Acidosis – increase minute ventilation

- **VCV**
 - Increase VT (Pplat < 30 cmH2O)
 - Increase RR
 - If on SIMV, may increase PSV

- **PCV**
 - Increase inspiratory pressure (Pplat < 30 cmH2O)
 - Increase RR
 - If on SIMV, may increase PSV

- **PSV**
 - Increase PSV level
 - Switch to VCV or PCV
Respiratory Alkalosis – decrease minute ventilation

- **VCV**
 - Decrease VT
 - Decrease RR (if patient not assisting)
 - If on SIMV, may decrease PSV

- **PCV**
 - Decrease inspiratory pressure
 - Decrease RR
 - If on SIMV, may decrease PSV

- **PSV**
 - Decrease PSV level
 - Mild sedation if necessary (careful not to eliminate drive)

Wrap Up

- Mechanical ventilation is a necessary adjunct to the care of some patients, but not without serious complications.
- Protective ventilation strategies should always be used in patients with ARDS: i.e. low VT, low Plat.
- Always watch for and try to reduce auto-PEEP in patients with COPD: i.e. long expiratory times, short inspiratory times, PEEP to improve triggering if necessary.
- Maintain VAP prevention strategies
- Wean assessment and SBT daily when patient condition improves.

- Start at 100%; titrate for Spo2 > 90%