Bleeding disorders have been recognized since ancient times…

• The Talmud (2nd century AD) states that male babies do not have to be circumcised if two brothers have died from the procedure

• In 12th century Albucasis, an Arab physician, wrote about a family in which males died of excessive bleeding from minor injuries

• In 1803, Dr. John Otto, Philadelphia, wrote about an inherited hemorrhagic disposition affecting males

• In 1828 at the University of Zurich, “hemophilia” was first used to describe a bleeding disorder
A “Royal Disease”

Queen Victoria (1837 to 1901) passed hemophilia on to German, Russian and Spanish royal families. Her son, Leopold, had frequent hemorrhages (British Medical Journal, 1868) and died of a brain hemorrhage at 31. His grandson also died of a brain hemorrhage in 1928.
Types of Bleeding Disorders

von Willebrand disease
Factor I deficiency
Factor II deficiency
Factor V deficiency
Factor VII deficiency
Factor VIII deficiency (Hemophilia A)
Factor IX deficiency (Hemophilia B)
Factor X deficiency
Factor XI deficiency
Factor XII deficiency
Factor XIII deficiency
Molecular Genetics of Hemophilia

- Hemophilia A
 - Factor VIII deficiency
- Other Genetic Disorders with low Factor VIII
 - Von Willebrand Disease (Type 2N)
 - Combined Deficiency of Factor V and Factor VIII
- Hemophilia B
 - Factor IX deficiency
Hemophilia A

• Incidence 1:5,000 - 1:10,000 males
 – about as rare as the birth of triplets
 – ~ 1 in 5,000 live male births are affected.
 – ~ 15,000 to 20,000 people with hemophilia in the US

• Hemarthroses, post-traumatic and post-surgical bleeding

• Severity related to factor VIII level
 – <1% = severe
 – 1-5% = moderate
 – 5-15% = mild

• Inhibitors develop in ~10-20% of severe patients

Symptoms of hemophilia include...

Primary: Bruising and Bleeding

Minor bleeds:
• early joint and muscle bleeds
• bleeding in the mouth and gums
• epistaxis (nosebleed),
• hematuria (blood in the urine)

Major bleeds
• central nervous system
• severe injury
• neck/throat, eye, gastrointestinal, hip, iliopsoas, late joint and muscle, testicles, and retroperitoneum bleeds
Secondary:

- Chronic joint deformities from recurrent bleeding
- Antibodies to transfused factor VIII (inhibitors develop only in 20-30% of severe patients, not in mild-moderate)
- AIDS - Over 60% of persons with hemophilia treated with plasma concentrates in the early 1980s became HIV+

Mild hemophilia patients (factor levels >5% and <50%)
- usually bleed only after injury or surgery
- some never have a major bleed, others have several episodes depending on functional factor levels
- carriers of hemophilia may fall in the mild range

Moderate hemophilia patients (factor levels 2% to 5%)
- bleed about one a month, usually after trauma, surgery, or exertion.
- once a bleeding history is established in an area, may have spontaneous bleeding episodes into those areas

Severe hemophilia patients (factor levels <1%)
- bleed very easily, sometimes spontaneously with no warning and for no apparent reason, usually targeting the joints but potentially in any area
Hemophilia A: Genetics

- X-linked inheritance
 - ~1/3 patients represent new mutations (Haldane hypothesis)
- Germinal mosaicism
- Low FVIII in female consider:
 - skewed X-inactivation
 - chromosomal abnormality (normal X inactivated)
 - VWD (particularly type 2N)

X-Linked Recessive Inheritance

- Affected males (XY):
 - sons unaffected (no male to male transmission)
 - daughters obligate carriers
- Carrier female (XX):
 - _ sons affected; _ daughters carriers
- Affected females: very rare.
Is this woman a hemophilia carrier of hemophilia?

- A biological daughter of a man with hemophilia
- A biological mother of one son with hemophilia
- A biological mother of more than one son with hemophilia
- A biological mother of one hemophilic son and has at least one other blood relative with hemophilia
- A sister of a male with hemophilia

Germline/Gonadal Mosaicism

46, XX

46, XY

Factor VIII allele - normal
Mutant VIII allele - normal

ovary
testes
Factor VIII

- Factor VIII gene
 - X-chromosome (Xq28), 186 kb, 26 exons
- 300 kDa protein:

 \[
 \text{A1} \quad \text{A2} \quad \text{B} \quad \text{A3} \quad \text{C1} \quad \text{C2}
 \]

- Biosynthesis: ?liver, ?lymphocytes, ?subset of ECs
- Low concentration (100 ng/ml), bound to VWF

Molecular Defects in Hemophilia A

- >500 specific mutations identified:
 - http://europium.csc.mrc.ac.uk
 - 1/3 new mutations (Haldane hypothesis)
 - CpG dinucleotides = hot spot (~25% of point mutations)
- L1 insertion
- Severe hemophilia A (FVIII<1%)
 - gene deletions (5%)
 - intron 22 inversion (45%)
 - point mutations (50%)
- ? Genetic modifiers -- VWF, FV Leiden
FVIII Gene Inversion (Intron 22)

- 45% of severe hemophilia A patients
- Region particularly prone to rearrangement
 - recurrent mutation event
 - recombination between repeated elements (gene A)
- Only occurs during male meiosis
 - Mother of “new” patient is generally a carrier
Genetic Diagnosis for Hemophilia A

- Prenatal diagnosis
 - genetic consultation
 - CVS, amniocentesis, cord blood sampling
- Screen for intron 22 inversion
 - only in severe patients (FVIII <1%)
- Mutation screening
 - available through specialized DNA diagnostic labs
- Linkage analysis
 - informative in >90% of families
 - requires other family members
 - potential for incorrect diagnosis (recombination)

Molecular Genetics of Hemophilia

- Hemophilia A
 - Factor VIII deficiency
- Other Genetic Disorders with low Factor VIII
 - Von Willebrand Disease (Type 2N)
 - Combined Deficiency of Factor V and Factor VIII
- Hemophilia B
 - Factor IX deficiency
VWF/Factor VIII Interaction

- VWF necessary for FVIII stability
- Non-covalent complex
- 1-2 FVIII per 100 VWF monomers
- Plasma FVIII and VWF levels proportional in normal and VWD

Type 2N VWD (*VWD Normandy*)

- Mutations in FVIII binding domain of VWF
 - decreased or absent FVIII binding activity
 - normal adhesive function
- Heterozygotes
 - disproportionately low FVIII
 - co-inheritance with type 1 -- ? increased severity
- Homozygotes
 - FVIII ~5-25% (? rare severe mutation)
 - mimics mild/ moderate hemophilia A, but autosomal recessive
 - poor response to FVIII concentrates
- Test plasma VWF for FVIII binding
- DNA testing available for limited set of type 2N VWF mutations

Combined Deficiency of Factors V and VIII

- Rare autosomal recessive
 - Most frequent in Jews of Sephardic and Middle Eastern origin
 - > 100 families worldwide
- Moderate bleeding tendency
 - FV and FVIII antigen and activity ~5-30%
- Mutations in ERGIC-53 (~75% of patients)
Molecular Genetics of Hemophilia

- Hemophilia A
 - Factor VIII deficiency
- Other Genetic Disorders with low Factor VIII
 - Von Willebrand Disease (Type 2N)
 - Combined Deficiency of Factor V and Factor VIII
- Hemophilia B
 - Factor IX deficiency
Hemophilia B

- ~25% of hemophilia (incidence ~1:35,000 males)
- Phenotype indistinguishable from hemophilia A
- Severity related to factor IX level
- Inhibitors correlate with type of mutation
 - deletions > point mutations
- Hemophilia B Leyden
 - Severe hemophilia as children
 - Dramatic improvement at puberty

Factor IX

- Factor IX gene
 - X-chromosome (~ 10 cM from FVIII) 34 kb, 8 exons
- Serine protease (requires FVIII as cofactor: Xase complex)
 - Vitamin K-dependent (γ-carboxylated)
- Biosynthesis: liver
- Plasma concentration ~10 µg/ml
Hemophilia B: Genetics

• X-linked inheritance
 – ~1/3 patients represent new mutations (Haldane hypothesis)
• Germinal mosaicism
• Low FIX in female consider:
 – skewed X-inactivation
 – chromosomal abnormality (normal X inactivated)

Molecular Defects in Hemophilia B

• >680 specific mutations identified:
 – http://www.umds.ac.uk/molgen/
 – 1/3 new mutations (Haldane hypothesis)
 – CpG dinucleotides=hot spot (~1/3 of point mutations)
 – 425 different amino acid substitutions
 – Mutations at 9/12 Gla codons
• Large deletions: increased risk of inhibitor development
• Estimate of human mutation frequency:
 – 2.14 X 10^-8 per base per generation
 – 128 mutations/zygotes (1% detrimental)
• Mutation screening
 – available through specialized DNA diagnostic labs
• Linkage analysis
History of Treatment for Hemophilia

1950s A basic understanding of coagulation
1960s Cryoprecipitate
1970s Freeze-dried concentrates from pooled plasma
 Increase in viral inactivation efforts
1980s More advanced viral inactivation procedures
 Expanded donor screening/testing
 Increased concentration/purity
1990s Non–plasma Recombinant DNA concentrates
 More sensitive viral marker screening tests
2000s Gene therapy?

Dr. Graham Pool
discovered factor VIII-rich cryoprecipitate

Goals of Hemophilia Care

• **Prevention:**
 Education, prophylaxis, and/or physical fitness with injury avoidance.

• **Prompt self-treatment:**
 Patients become quite adept at prompt preventive and emergency self-treatment.

• **Rehabilitation:**
 To limit secondary musculoskeletal and neurologic complications once the bleed subsides.

C. Harris, age 14
Treatment Basics

- Infuse concentrated Factor VIII
 - 80% of patients do at home
 - dose based on weight
 (eg. 2% rise/unit/kg) -
 - don’t need levels of 100%.

- DDAVP (IV/nasal) (mild hemophilia A)
 - releases factor VIII from endothelial cells
 - doubles or triples plasma factor VIII level

Recombinant Factor VIII:

Insertion of human factor VIII DNA into vector system allowing incorporation into non-human mammalian cell lines for continued propagation
HEMOPHILIA THERAPY IMPROVEMENTS:
Volumes (mL) required to obtain a factor VIII dose of 2000 IU:

- Whole Blood >4000 ml
- Whole Plasma = 2000 ml
- Cryoprecipitate = 400 ml
- Early Concentrates = 80 ml
- Today’s Concentrates <20 ml

Jason Burdick, age 12, Green Bay, WI

Financial & Insurance Issues

- > 70% of clotting factor distribution is by for-profit companies
 average cost/yr for human plasma derived or recombinant factor is
 $50,000 - $100,000

- Prophylaxis requires about 150,000 units/yr for a 65-pound child
 costing $85,000 per year

- Prophylaxis is covered by insurance on a case-by-case basis.
Avoid drugs that aggravate bleeding problems:

- Aspirin
- Heparin
- Warfarin
- Nonsteroidal anti-inflammatory drugs

Hemophilia is an ideal disease for gene therapy:

- caused by a single malfunctioning gene
- just small increase in factor level will provide great benefit:

raising factor by 2% will prevent spontaneous hemorrhages into joints, brain and other organs; levels greater than 20% to 30% will prevent bleeding in most injuries
Molecular Genetics of Hemophilia

Summary

- **Hemophilia A**: mutations in FVIII gene
 - Intron 22 inversion (~45% of severe)
 - Other deletions and point mutations
- **Other Genetic Disorders with low Factor VIII**
 - Type 2N VWD: mutations in VWD factor VIII binding domain
 - Combined Deficiency of Factor V and Factor VIII
 - ERGIC-53 gene mutations, ?other gene
- **Hemophilia B**: mutations in Factor IX