University of Michigan Medical School Logo

Medical Histology and Virtual Microscopy Learning Resources

The University of Michigan Medical School


Atlas Ch 10, pgs. 172-175 (Cartilage)
Text Ross and Pawlina, Chapter 7 Cartilage
Lab Resources


  1. Be able to recognize the three major cartilage types in typical light microscopic sections.
  2. Be able to use standard nomenclature to describe a section of cartilage (e.g. chondrocyte, lacuna, matrix, perichondrium).
  3. Understand the molecular basis for resilience of cartilages.
  4. Be able to describe the process of chondrogenesis.

I. Hyaline cartilage

(W pg 187, 10.1; pg 239, 12.8) hyalos = glass (Greek)

Slide 20 (trachea, H&E) WebScope ImageScope
Slide 40 (trachea, H&E) WebScope ImageScope
Slide 40N (hyaline cartilage, 1.5um section, H&E) WebScope ImageScope
slide 126 (trachea/esophagus, H&E) WebScope ImageScope

These slides are good examples of mature hyaline cartilage with its abundant matrix and spaces, lacunae, occupied by cells, chrondocytes, which usually shrink extensively during fixation.  The staining of the matrix is variable. Remember that there are abundant type II collagen fibrils in the matrix. However, they are too small to be resolved in the light microscope, so the matrix has an amorphous, glassy (or "hyaline") appearance.   The predominately basophilic staining of the matrix in slide #126 [example] reflects preservation of the negatively charged aggrecan molecules in the matrix. Note that the basophilia varies and some interterritorial matrix is eosinophilic reflecting loss (or minimal content) of negative charges, whereas the territorial matrix (the area immediately surrounding each lacuna) is much more basophilic. The differential staining of the territorial matrix compared to the interterritorial matrix is perhaps best shown in slide 40n. The staining actually reflects the relative content of aggrecan. How would changes in relative aggrecan content affect cartilage function? (CA1) Try to find an area where the cartilage has not pulled away from its investing fibrous perichondrium.  In regions where there is no separation, you can see the stages of chondroblast entrapment [example]into the matrix (arrested at this point, the cartilage is no longer growing) and the eventual enlargement and rounding of the lacunar space.  Look for cell clusters, isogenous groups. For more practice in recognizing hyaline cartilage, look at the nasal septum in slide #124 WebScope ImageScope.

II. Elastic cartilage

(W pg 189, 10.4)
Slide 44 (ear, pinna, aldehyde fuchsin & trichrome) WebScope ImageScope
UCSF Slide 53 (ear, pinna, van Gieson's stain) WebScope ImageScope
Slide 44H (epiglottis, H&E) WebScope ImageScope

Slides #44 and UCSF #53 are from the pinna of the ear stained with aldehyde fuchsin and Masson's trichrome (#44) or elastic van Gieson's stain (UCSF #53).  In slide #44 stained with aldehyde fuchsin, note the extensive, dark purple elastic fiber network within the cartilage matrix. In slide #53, the elastic fibers stain black whereas the rest of the matrix is yellow-brown. Elastic cartilage can be readily identified in routine H&E sections as well as shown in slide #44H which is from the epiglottis. Look for the plates of elastic cartilage found just under the glands deep to the respiratory epithelium. Observe that there are chondrocytes within lacunae just as in hyaline cartilage, but note the eosinophilic, fibrillar matrix due to the presence of elastic fibers. As with hyaline cartilage, fibrils of type II collagen are present, but they cannot be seen in the light microscope.  You may also notice that elastic cartilage tends to be more cellular than hyaline cartilage.  You can only convincingly identify the elastic cartilage when the section is specifically stained for elastin.

III. Fibrocartilage

(W pg 189, 10.3)
Slide 45 (intervertebral disc, H&E) WebScope ImageScope

This cartilage is named for its textured matrix; it looks fibrous, and in addition lacunae can be seen.  Locate the nucleus pulposus (clear area) of the intervertebral disc, then move out to the edge of the section to see fibrocartilage [example].  Note the fibrous texture of the matrix due to the presence of type I collagen fibers in addition to the type II collagen present in all cartilage tissue (type II fibrils are not bundled into fibers large enough to be visible in the light microscope), but note also the distinct chondrocyte lacunae.  Also, note that there is no perichondrium in this cartilage.

Electron Micrograph Wall Charts

#29 HYALINE CARTILAGE WebScope ImageScope

Note the abundance of intercellular matrix. Are capillaries present in the matrix? (CA2) Study the development of chondrocytes from chondroblasts.


Note that the collagenous fibrils are partially obscured and lack obvious periodicity. What type of collagen is found in the matrix? (CA3) Note the many cell organelles in this very active chondrocyte.


Extracellular collagenous fibrils are coarser in fibrous cartilage than in hyaline cartilage, and do show periodicity. (They are made of type I collagen.) Observe the varied directions of collagenous bundles. The amorphous matrix surrounding the chondrocyte helps distinguish this cell from that of a fibroblast in dense connective tissue. For a comparison, check back to chart #23 WebScope ImageScope.

#32 ELASTIC CARTILAGE WebScope ImageScope

Find the elastic components in the matrix. The delicate intracellular filaments are intermediate (vimentin) filaments.

Review Questions

CA1: How would differences in the relative content of aggrecan affect cartilage function? Answer
CA2: Are capillaries present in the matrix?Answer
CA3: What type of collagen is present in hyaline cartilage matrix?Answer

Mature Bone

Atlas   Wheater's, Ch 10, pgs. 190-5 (general structure & cells of bone)
Text   Ross and Pawlina, Ch 8, pgs. 202-13 (general structure & cells of bone)  
Lab Resources


  1. Be able to use standard nomenclature to describe the microscopic structure of bone (e.g. lamella, osteon, osteocytes, canaliculi, periosteum, endosteum).
  2. Be able to recognize mature bone (dense and cancellous) in conventional or ground section. Be able to identify the component parts of mature bone (e.g. osteon, lamella, lacuna, osteocyte) in appropriate sections.
  3. Be able to describe the anatomical route that nutrients and metabolic products use between the vascular system and osteocyte.


Slide 50 (fibula, monkey, decalcified, H&E) WebScope ImageScope (W pg 194, 10.11)

Prior to sectioning and staining, this sample was soaked in a weak acid solution thus dissolving the mineralized component of the bone matrix but leaving behind all of the organic components (mostly type I collagen). Even though this section is distorted, you should be able to find osteons in various stages of development, lacunae, and canaliculi (to see canaliculi you will need to use your microscope and the glass slide from your collection --cut down the light by closing down the iris diaphragm to see them). The inner and outer circumferential lamellae [example] can the bone shaft can also be seen in this section. What distinguishes between compact and spongy bone? (MatureBO1)

Ground sections (W pgs 192-193, 10.9-10.10):
Cross sections:

Slide 51 WebScope ImageScope
Slide 51xc (fibula, human, ground section) WebScope ImageScope
Slide 93B WebScope ImageScope

Longitudinal sections:

Slide 93A (thin) WebScope ImageScope
Slide 51_20X WebScope ImageScope
Slide 51L-EX WebScope ImageScope
Slide 93C WebScope ImageScope

These "ground sections" were prepared by taking pieces of bone and grinding them with abrasives between two glass plates until they are thin enough to be semi-transparent. First, study cross sections (#51, #93B). In these sections, the trapped air bends the light giving a dark image; the mineral and matrix generally transmit the light. You should be able to identify osteons and their subdivisions (as in slide 50), interstitial lamellae, Haversian canals and nutrient canals (Volkmann). Note that the latter canals penetrate osteons without causing new lamellae to be laid down around them. Note that Slide 51xc is also an entire cross section of the fibula, so you should try to compare it against Slide 50 discussed above.

Study the thinnest ground section (#93A) to identify lacunae and canaliculi. (W pg 193, 10.10a). Now, look at the longitudinal sections (#51-20x, #51-40x, or #93C) of compact bone and try identifying the various structures mentioned above, especially Haversian and Volkmann's canals.

Electron Micrograph Wall Charts

#35 OSTEOCYTE WebScope ImageScope

The calcium crystals of the bone matrix were removed in this preparation by a decalcification process. Note how coarse the collagenous fibrils are, and the difficulty in visualizing the periodicity of the fibrils (probably due to the process of mineralization).

#40 HAVERSIAN CANAL WebScope ImageScope

Note the "inactive" appearance of endosteal cells. The presence of a macrophage in the Haversian canal indicates the potential eroding function of the endosteal lining of the canal. Why are blood vessels so important in bone? (MatureBO2)

Review Questions

MatureBO1: What distinguishes between compact and spongy bone? AnswerMatureBO2: Why are blood vessels important in bone? Answer

Practice Questions

  1. The cell with its nucleus indicated by the arrow is a/an: WebScope or ImageScope

    1. chondrocyte
    2. chondroblast
    3. osteogenic progenitor cell
    4. osteocyte
    5. connective tissue fibroblast
    6. Answer
  2. The type of cartilage shown: WebScope or ImageScope
    1. is highly resistant to compression.
    2. is ALWAYS completely invested by a fibrous perichondrium.
    3. contains a matrix of type I collagen fibers and hyaluronan.
    4. is found primarily in the pinna of the ear and the epiglottis.
    5. ALL of the above.
    6. Answer
  3. Fibrocartilage:
    1. is present in intervertebral disks.
    2. usually inserts into bone.
    3. contains a matrix of type II collagen and hyaluronan.
    4. has high tensile strength.
    5. ALL of the above.
    6. Answer
  4. In this section of ground bone, the area specifically indicated between the two bars includes: Click here to view image
    1. Inner circumferential lamellae
    2. Outer circumferential lamellae
    3. Interstitial lamellae
    4. a Haversian system (osteon)
    5. a Volkmann’s canal
    6. Answer