|
Frequently Asked Questions
Transgenic Animal Model
|
What does the Transgenic Core do?
The Transgenic Core routinely preparesgenetically modified mice and rats for
University of Michigan investigators. These animals can be used to study gene
function, gene expression, gene regulation, to develop animal models of human
disease, to test gene therapy reagents, to establish cell lines from specific
cell types transformed in vivo, to produce mice with tissue-specific inducible
gene expression or tissue-specific gene deletions, or to study the effects of
cell specific ablation with toxigenes.
We provide access to our micromanipoulation and embryos stem cell workstations along with necessary reagents:
- specialized plasmids
- embryonic stem (ES) cell lines
- FBS
- feeder cells certified for ES cell culture.
The Transgenic Core provides assisted reporductive technology for mice and rats including:
- in vitro fertilization to exand animal colonies or to prepare 2-cell eggs for cryoperservation
- cryropresrvation of 8-cell eggs
- sperm cryopreservation
- recovery of live animals from cryopreserved materials
- intracytoplasmid sperm insertion
The Transgenic Core derives specific pathogen free mice or rats from pathogen-infected animals. Hands-on training is proved to individuals in all aspects of transgenic technology.
How do I submit a transgene?
Visit Instructions & Forms for details on how to submit
a transgene.
How much does it cost?
Fees for University of Michigan investigators are listed on Quick Facts. Members
of the following U-M centers receive discounts:
- Comprehensive Cancer Center
- Rheumatic Diseases Research Core Center
- Michigan Diabetes Research and Training Center
- Michigan Gastrointestinal Peptide Research Center
- Michigan
George M. O'Brien Renal Core Center
When will my service request be processed?
The Transgenic Core prioritizes all requests for service on a "first-come,
first-serve" basis. This standard is applied to everyone equally, even our
faculty directors. The time
between transgene DNA submission and microinjection is updated regularly.
Typically ES cell work is scheduled one to three months ahead. Since the
inception of the Transgenic Core our policy has been that no project, whether it
be gene targeting in ES cells or a transgenic mouse model, will enter the work
queue until all of the required materials are provided. This includes both
scientific materials, such as DNA samples and genotyping tests, and paperwork,
such as approval to use animals in research, material transfer agreements and
billing information.
How effective is the Transgenic Core?
Both transgenic and gene targeting efficiencies are excellent. We guarantee that
at least three transgenic founders will be produced (the average number is 10).
Since 1989 over 13,000 transgenic founders were produced from over 1,300
transgene constructs. These efficiency of transgenic production equals or
exceeds values in the published transgenic mouse literature. The efficiency of
all steps in gene targeting compare favorably with literature values. Multiple
embryonic stem (ES) cell lines have been imported and screened for germline
chimera formation. In addition, we have developed our own 129X1/SvJ ES cell line
"Pat5". See the list of ES cell lines. We have
collaborated with investigators to generate over 200 new strains of mice from ES
cells mutated by homlogous recombination with gene targeting vectors.
In addition to developing mouse models of genetic disease, the Transgenic Core has produced over 300 transgenic rat founders from more than 44 transgenes. In addition, we have produced knockout rats for a half-dozen genes using zinc finger nucleases.
What about consultation?
We provide advice on all aspects of this technology from experimental design to
mouse breeding. We can provide protocols and training for every step in the
process of generating transgenic or gene targeted mice. We are ready to
interact, our doors are open, please contact us with any questions.
What kind of paperwork is involved?
Any project that uses mice must be approved by the
University Committee on Use and Care of
Animals. Concat the UCUCA for innformation on how to apply for permision to
use vertebrate animals in research testing or instruction. The
Unit for Laboratory Animal Medicine
provides animal housing and veterinary care. Investigators approved for animal
research are expected to provide ULAM with a
shortcode that can be
used to pay for veterinary care and housing costs. Transgenic Core submission
forms require the following information:
- UCUCA approval number
- ULAMshortcode number for animal housing and veterinary care
Please note that the information on transgenic mice below applies equally to transgenic rats.
What is a transgenic mouse/rat?
A transgenic mouse or rat has a transgene in addition to its normal complement
of genes. A transgene is an artificial gene cloned in the lab by recombinant DNA
technology and microinjected into fertilized mouse or rat eggs. Eggs are
transferred into foster mothers for gestation. Transgenic progeny are bred to
produce a line. Transgenes integrate randomly into chromosomal DNA and are
transmitted as a Mendelian trait.
What is involved in making transgenic mice/rats?
The Core is available for consultation on all phases of transgenic research. The
investigator designs and clones the transgene and develops a genotyping assay
with single gene copy
sensitivity, usually PCR based. A genotyping assay that detects an
endogenous single copy gene
in the mouse or an
endogenous gene in the rat is a necessary positive control. The assays for
the transgene and the endogenous gene are used to test all potential transgenic
founder mice or rats. The combination of assays eliminates both false negatives
and false positive mis-identifications. Transgene
DNA is purified by the
Transgenic Core for microinjection from a restriction digest supplied by the
investigator. The Core microinjects DNA into fertilized (C57BL/6 X SJL)F2 eggs
and transfers the eggs into pseudopregnant mice. Alternatively, we will make
transgenic mice in other genetic backgrounds, upon request. We have successfully
made transgenic mice in C57BL/6 X SJL)F2, FVB/N, C57BL/6, (C57BL/6 X DBA/2)F2,
SWR, B10D2 congenic strains, and mutant strains such as mnd2, Myo15sh2, and
C57BL/10ScSn-Dmdmdx/J. When the pups are 2 weeks old, the Core applies ear tags
and obtains tail biopsies from the mice. The Core will provide the tail biopsies
to the investigator. Investigators may prepare
genomic DNA from tail biopsies
by hand or by any of the numerous kits on the market (see
Protocols). The
investigator will identify
the transgenic mice by PCR. The transgenic mice are transferred to the
investigator for breeding and analysis of transgene expression.
What can I do to maximize a successful transgenic outcome?
We guarantee that you will receive 3 or more transgenic mice or rats, however we
can not guarantee transgene expression or transmission. The best strategy is to
use a promoter that is already well characterize in transgenic mice or to employ
very large flanking regions greater than 10 Kb. Alternatively, a bacterial
artificial chromosome can be used to direct gene expression. BACs are include
over 100Kb of genomic DNA sequence and often direct gene expression in a fashion
which close matches the expression of endogenous genes.
The yield of transgenics is optimized by injecting highly purified linear DNA fragments with overhanging ends. Remove as much vector sequence as possible from the construct since prokaryotic sequences inhibit transgene expression. Although not a guarantee, demonstrated expression in a cell line is a positive indicator of in vivo expression and provides a rapid, inexpensive method to demonstrate that the transgene has been constructed properly.
How many transgenic mice/rats will I get?
We guarantee that you will receive a minimum of three transgenic founders, often
more. The purity of the microinjection DNA is the single most important factor
determining how many transgenic founders will be produced. Another very
important parameter is the reliability and sensitivity of the screen for the
transgene.
What if my DNA construct is lethal?
If you believe that your construct may be lethal, we will co-inject a neutral
DNA fragment as a marker. If your transgene is not lethal then mice with both
the transgene and neutral marker will be detected. However, if only mice with
the neutral marker are detected then the construct is likely to be embryonic
lethal. Alternatively you choose to examine transgenic founders. Transgenic
embryos can be analyzed at various developmental ages to determine the time of
death during gestation.
What is the significant of transgene copy number?
For the majority of transgenes the copy number does not correlate with
expression level. The exceptions occur when large genomic fragments are used to
make transgenics. Examples include P1 clones (90 Kb), BACs (180 Kb,) or YACs
(400 Kb). Some reports suggest that if you use locus control regions or matrix
attachment regions around your transgene that you may be able to insulate if
form integration effects. Previous work in the literature has shown that
attempts to produce low copy numbers by microinjecting dilute DNA does not
affect copy number, but does reduce the overall yield of transgenic mice.
What if my transgene is too big?
The size of your transgene should not interfere with transgenic mouse
production. Large transgenes may be difficult to clone. You may wish to consider
BAC recombineering to produce large transgenes under the control of regulatory
elements in the BAC. The Core has produced transgenics from Bacterial Artificial
Chromosomes up to 180 Kb in size. There are reports in the literature of
transgenic mice produced from the microinjection of 90 Kb P1 clones, 248 Kb
yeast artificial chromosomes, and even microdissected chromosome fragments.
What is a gene targeted mouse?
Gene targeted mice are derived from embryonic stem (ES) cells. ES cells are
manipulated in culture by introducing a targeting vector that is cloned in the
lab by recombinant DNA technology. The targeting vector DNA precisely replaces a
segment of chromosomal DNA (hence the name "gene targeting") in the ES cell. ES
cells are injected into a normal mouse blastocyst where they mingle with the
embryo' s cells to form the developing mouse. Up to 100% of the resulting mouse
chimera can be formed from cells descended from the ES cells. ES
cell-derived-mouse chimeras are bred to normal mice to produce progeny carrying
the targeted gene which is transmitted as a Mendelian trait.
What is involved making gene targeted mice?
The major stumbling block in this process is the identification of ES cell
clones that have undergone homologous recombination between the targeting vector
and the chromosome in the ES cell. To maximize a successful outcome: 1) make
sure that the genomic DNA in your targeting vector is isogenic with the ES cell
line question and 2) develop a hybridization screen that will detect your wild
type gene in 2 ug of genomic ES cell DNA. We encourage you to contact
Thom Saunders for a consult on your
targeting vector design and on all phases of gene targeting research. The first
step in the process is to obtain and map and sequence a 129X1/Sv genomic clone
of the gene of interest. A 129X1/Sv library is available for screening from the
core. The investigator designs and clones the targeting vector and purifies it
for electroporation into embryonic stem (ES) cells. The Core has numerous
plasmids designed for targeting vector construction. The
targeting vector is then electroporated into ES cells by Core personnel,
clones are picked after drug selection, the clones are cryopreserved at -80 C
while the investigator screens DNA from the clones to identify those which have
undergone homologous recombination. Alternatively, the Core will train you in ES
cell culture and provide you with quality tested reagents and space in the
multi-user Mouse Embryonic Stem Cell Laboratory so that you can do the work
yourself. After the investigator isolates euploid ES clones which have undergone
homologous recombination with the targeting vector they are microinjected into
mouse blastocysts and transferred into pseudopregnant recipients. When the
resulting pups are three weeks old, they are scored for ES cell contribution and
transferred to the investigator for breeding and analysis.
What can I do to maximize a successful gene targeting outcome?
- Characterize the genomic structure of your thoroughly.
- Develop a sensitive screen for homologous recombination in the ES cells.
- Consider the biological consequence of the mutation you introduce.
We can guarantee that we will inject your embryonic stem (ES) cells into a
minimum of 50 blastocysts for ES cell-mouse chimera formation. Because of the
intrinsic variability in individual ES cell clones, we cannot guarantee that
chimeras will be produced or that they will transmit your targeted gene through
the germline. Therefore, we recommend that you provide at least three clones for
microinjection. In collaboration with other labs on campus, we have successfully
targeted over 60 genetic loci. We are confident in that we can work with you to
genetically engineer new strains of mice that carry novel mutations of value to
your research. The Core provides plasmids for gene targeting, ES cell lines that
have been tested for germline chimera formation, feeder cells for ES cell
culture, FBS tested for ES cell culture, and training in the exacting techniques
required for successful ES cell culture. Contact
Thom Saunders for more information on
gene targeting projects.
What are the
NIH
IRP Guidelines for the Availability of Transgenic/Knockout Animals?
Transgenic and gene "knockout" animals that have been developed using NIH IRP
(intramural research program) funds and resources will be provided to other
laboratories following publication of descriptions of the animals in the peer
reviewed literature. It is an obligation of NIH intramural scientists to make
such animals widely available for research purposes. This can be achieved by
making arrangements to send breeding pairs to a central repository such as the
Induced Mutant Resource at the Jackson Laboratory.
This would assure the availability of clean, genetically characterized animals
within a year's time. An attempt should be made to reduce duplication of effort
by setting up collaborative experiments whenever possible; however, this should
not be used as a mechanism to inhibit the distribution of animals.
These guidelines for the IRP are now in agreement with those of the US Public Health Service (PHS) for the extramural community: "It is the policy of PHS to make available to the public the results and accomplishments of the activities that it funds...Therefore, when these resources are developed with PHS funds and the associated research findings have been published or after they have been provided to the agencies under contract, it is important that they be made readily available for research purposes to qualified individuals within the scientific community. This policy applies to grants, cooperative agreements, and contracts."
These guidelines supplement those already covered by the NIH Guide for other types of biological materials and resources. The NIH Guide is available online.


